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Abstract
•We show that learning to rank can be viewed as a generalization of robust classification.

•Motivated by this observation, we propose RoBiRank, which is a non-convex bound of (N)DCG.

•Although non-convex, it consists of Type-I loss functions [1] and thus amenably optimized.

•When applied to latent collaborative retrieval (matrix factorization with ranking loss), the algorithm can
be efficiently parallelized:

•Our algorithm shows competitive performance on latent collaborative retrieval of Million Song Dataset
(MSD), which requires to model 386, 133× 49, 824, 519 pairwise interactions.

Robust Classification
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• Suppose (x1, y1), (x2, y2), . . . , (xn, yn) with xi ∈ Rd and yi ∈ {−1,+1}.
• Ideally, we would like to optimize the number of mistakes:

L(ω) :=

n∑
i=1

I(yi · 〈xi, ω〉 < 0),

but since it is discrete, we bound each indicator by a continuous loss function:

L(ω) :=

n∑
i=1

σ(yi · 〈xi, ω〉). (Non-robust)

– When σ(t) := log2

(
1 + 2−t

)
, we get logistic regression.

– When σ(t) := max 1− t, 0, we get SVM.

• Convex objective functions are sensitive to outliers. Using following transformations,

ρ1(t) := log2(t + 1), ρ2(t) := 1− 1

log2(t + 2)
,

we can warp loss functions to get:

L1(ω) :=

n∑
i=1

ρ1 (σ(yi · 〈xi, ω〉)) , (Robust Type I)

L2(ω) :=

n∑
i=1

ρ2 (σ(yi · 〈xi, ω〉)) . (Robust Type II)

– As t→∞, Type I loss function ρ1(σ(−t)) goes to ∞ in much slower rate than σ(−t) does.

– Even if t→∞, Type II loss function ρ1(σ(−t)) does not go to ∞.

– Type II loss function has stronger statistical guarantees.

– Type I loss function is easier to optimize, since the gradient does not vanish.

Learning to Rank
•Notations

–X := {x1, x2, . . . , xn}: set of users

– Y := {y1, y2, . . . , ym}: set of items

– sxy: score user x assigns to item y

– φ(x, y) ∈ Rd: extracted feature between x and y.

– ω ∈ Rd: model parameter

– fω(x, y) := 〈φ(x, y), ω〉: score model assigns on item y for user x

– rankω(x, y): rank of item y for user x. Note that

rankω(x, y) =
∑

y′∈Yx,y′ 6=y
I
(
fω(x, y)− fω(x, y′) < 0

)
.

• Simple objective function for ranking would be [2]:

min
ω
L(ω) :=

∑
x∈X

∑
y∈Yx

sxy · rankω(x, y),

=
∑
x∈X

∑
y∈Yx

sxy
∑

y′∈Yx,y′ 6=y
I
(
fω(x, y)− fω(x, y′) < 0

)
,

and again, we can bound each indicator by a continuous loss:

min
ω
L(ω) :=

∑
x∈X

∑
y∈Yx

sxy
∑

y′∈Yx,y′ 6=y
σ
(
fω(x, y)− fω(x, y′) < 0

)
.

•Discounted Cumulative Gain (DCG):

DCG(ω) :=
∑
x∈X

∑
y∈Yx

sxy
log2 (rankω(x, y) + 2)

,

Maximization of DCG is equivalent to:

min
ω

∑
x∈X

∑
y∈Yx

sxy ·
{

1− 1

log2 (rankω(x, y) + 2)

}

⇔min
ω

∑
x∈X

∑
y∈Yx

sxy ·

1− 1

log2

(∑
y′∈Yx,y′ 6=y I (fω(x, y)− fω(x, y′) < 0) + 2

)


⇔min
ω

∑
x∈X

∑
y∈Yx

sxy · ρ2

 ∑
y′∈Yx,y′ 6=y

I
(
fω(x, y)− fω(x, y′) < 0

) .

Its continous bound would be:

L2(ω) :=
∑
x∈X

∑
y∈Yx

sxy · ρ2

 ∑
y′∈Yx,y′ 6=y

σ
(
fω(x, y)− fω(x, y′)

) . (Robust Type II)

• To avoid the vanishing gradient problem, our proposal RoBiRank optimizes:

L1(ω) :=
∑
x∈X

∑
y∈Yx

sxy · ρ1

 ∑
y′∈Yx,y′ 6=y

σ
(
fω(x, y)− fω(x, y′)

) . (Robust Type I)
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Latent Collaborative Retrieval
•When the size of the data, especially Y is large,

– Generating features φ(x, y) for all x and y is challenging

– Computing
∑
y′∈Yx,y′ 6=y σ

(
fω(x, y)− fω(x, y′)

)
is expensive

– Usually consists of implicit feedback: sxy = 0 for most (x, y).

• To avoid the feature engineering burden, let

– user parameter: U1, U2, . . . , Un ∈ Rd

– item parameter: V1, V2, . . . , Vm ∈ Rd

– score: fω(x, y) :=
〈
Ux, Vy

〉
,

as in matrix factorzation [3]. The objective function becomes

∑
x∈X

∑
y∈Yx

sxy · ρ1

 ∑
y′∈Yx,y′ 6=y

σ
(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉) .

• To avoid calculating the summation over Y , using the following property of ρ1(·),

ρ1(t) = log2(t + 1) ≤ − log2 ξ +
ξ · (t + 1)− 1

log 2
, (for any ξ > 0)

we linearize the objective function:

∑
x∈X

∑
y∈Yx

sxy ·

− log2 ξxy +
ξxy ·

(∑
y′ 6=y σ

(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉)
+ 1
)
− 1

log 2

 ,
by introducing ξxy for each x, y with sxy 6= 0.

• If we uniformly sample (x, y, y′) from
{

(x, y, y′) : sxy 6= 0
}

,

sxy ·

− log2 ξxy +
ξxy−1
log 2

|Y| − 1
+ ξxy · σ

(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉) ,
is an unbiased estimator, which allows us to take guaranteed stochastic gradient.

Parallelization
•User parameters and item parameters are partitioned into multiple machines

•User parameters always stay, item parameters are exchanged after each epoch

•Within each epoch, SGD updates are taken within accessible region (Stratified SGD of [4])
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