
Ranking via Robust Binary Classification
Hyokun Yun1, Parameswaran Raman2, S.V.N. Vishwanathan1,2

Amazon1, University of California Santa Cruz2

Abstract
•We show that learning to rank can be viewed as a generalization of robust classification.

•Motivated by this observation, we propose RoBiRank, which is a non-convex bound of (N)DCG.

•Although non-convex, it consists of Type-I loss functions [1] and thus amenably optimized.

•When applied to latent collaborative retrieval (matrix factorization with ranking loss), the algorithm can
be efficiently parallelized:

•Our algorithm shows competitive performance on latent collaborative retrieval of Million Song Dataset
(MSD), which requires to model 386, 133× 49, 824, 519 pairwise interactions.

Robust Classification

−3 −2 −1 0 1 2 3

0

1

2

3

4

margin

lo
ss

0-1 loss: I(· < 0)
logistic loss: σ(·)

hinge loss

0 1 2 3 4 5

0

1

2

3

4

5

t

fu
n

ct
io

n
va

lu
e

identity
ρ1(t)
ρ2(t)

−5−4−3−2−1 0 1 2 3 4 5

0

1

2

3

4

5

t

lo
ss

σ(t)
σ1(t) := ρ1 (σ(t))
σ2(t) := ρ2 (σ(t))

• Suppose (x1, y1), (x2, y2), . . . , (xn, yn) with xi ∈ Rd and yi ∈ {−1,+1}.
• Ideally, we would like to optimize the number of mistakes:

L(ω) :=

n∑
i=1

I(yi · 〈xi, ω〉 < 0),

but since it is discrete, we bound each indicator by a continuous loss function:

L(ω) :=

n∑
i=1

σ(yi · 〈xi, ω〉). (Non-robust)

– When σ(t) := log2

(
1 + 2−t

)
, we get logistic regression.

– When σ(t) := max 1− t, 0, we get SVM.

• Convex objective functions are sensitive to outliers. Using following transformations,

ρ1(t) := log2(t + 1), ρ2(t) := 1− 1

log2(t + 2)
,

we can warp loss functions to get:

L1(ω) :=

n∑
i=1

ρ1 (σ(yi · 〈xi, ω〉)) , (Robust Type I)

L2(ω) :=

n∑
i=1

ρ2 (σ(yi · 〈xi, ω〉)) . (Robust Type II)

– As t→∞, Type I loss function ρ1(σ(−t)) goes to ∞ in much slower rate than σ(−t) does.

– Even if t→∞, Type II loss function ρ1(σ(−t)) does not go to ∞.

– Type II loss function has stronger statistical guarantees.

– Type I loss function is easier to optimize, since the gradient does not vanish.

Learning to Rank
•Notations

–X := {x1, x2, . . . , xn}: set of users

– Y := {y1, y2, . . . , ym}: set of items

– sxy: score user x assigns to item y

– φ(x, y) ∈ Rd: extracted feature between x and y.

– ω ∈ Rd: model parameter

– fω(x, y) := 〈φ(x, y), ω〉: score model assigns on item y for user x

– rankω(x, y): rank of item y for user x. Note that

rankω(x, y) =
∑

y′∈Yx,y′ 6=y
I
(
fω(x, y)− fω(x, y′) < 0

)
.

• Simple objective function for ranking would be [2]:

min
ω
L(ω) :=

∑
x∈X

∑
y∈Yx

sxy · rankω(x, y),

=
∑
x∈X

∑
y∈Yx

sxy
∑

y′∈Yx,y′ 6=y
I
(
fω(x, y)− fω(x, y′) < 0

)
,

and again, we can bound each indicator by a continuous loss:

min
ω
L(ω) :=

∑
x∈X

∑
y∈Yx

sxy
∑

y′∈Yx,y′ 6=y
σ
(
fω(x, y)− fω(x, y′) < 0

)
.

•Discounted Cumulative Gain (DCG):

DCG(ω) :=
∑
x∈X

∑
y∈Yx

sxy
log2 (rankω(x, y) + 2)

,

Maximization of DCG is equivalent to:

min
ω

∑
x∈X

∑
y∈Yx

sxy ·
{

1− 1

log2 (rankω(x, y) + 2)

}

⇔min
ω

∑
x∈X

∑
y∈Yx

sxy ·

1− 1

log2

(∑
y′∈Yx,y′ 6=y I (fω(x, y)− fω(x, y′) < 0) + 2

)

⇔min
ω

∑
x∈X

∑
y∈Yx

sxy · ρ2

 ∑
y′∈Yx,y′ 6=y

I
(
fω(x, y)− fω(x, y′) < 0

) .

Its continous bound would be:

L2(ω) :=
∑
x∈X

∑
y∈Yx

sxy · ρ2

 ∑
y′∈Yx,y′ 6=y

σ
(
fω(x, y)− fω(x, y′)

) . (Robust Type II)

• To avoid the vanishing gradient problem, our proposal RoBiRank optimizes:

L1(ω) :=
∑
x∈X

∑
y∈Yx

sxy · ρ1

 ∑
y′∈Yx,y′ 6=y

σ
(
fω(x, y)− fω(x, y′)

) . (Robust Type I)

2 4 6 8 10 12 14 16 18 20
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

k

N
D

C
G

@
k

TD 2004

RoBiRank
RankSVM
LSRank

InfNormPush
IRPush

2 4 6 8 10 12 14 16 18 20
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

k

N
D

C
G

@
k

TD 2004

RoBiRank
MART

RankNet
RankBoost
AdaRank

CoordAscent
LambdaMART

ListNet
RandomForests

Latent Collaborative Retrieval
•When the size of the data, especially Y is large,

– Generating features φ(x, y) for all x and y is challenging

– Computing
∑
y′∈Yx,y′ 6=y σ

(
fω(x, y)− fω(x, y′)

)
is expensive

– Usually consists of implicit feedback: sxy = 0 for most (x, y).

• To avoid the feature engineering burden, let

– user parameter: U1, U2, . . . , Un ∈ Rd

– item parameter: V1, V2, . . . , Vm ∈ Rd

– score: fω(x, y) :=
〈
Ux, Vy

〉
,

as in matrix factorzation [3]. The objective function becomes

∑
x∈X

∑
y∈Yx

sxy · ρ1

 ∑
y′∈Yx,y′ 6=y

σ
(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉) .

• To avoid calculating the summation over Y , using the following property of ρ1(·),

ρ1(t) = log2(t + 1) ≤ − log2 ξ +
ξ · (t + 1)− 1

log 2
, (for any ξ > 0)

we linearize the objective function:

∑
x∈X

∑
y∈Yx

sxy ·

− log2 ξxy +
ξxy ·

(∑
y′ 6=y σ

(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉)
+ 1
)
− 1

log 2

 ,
by introducing ξxy for each x, y with sxy 6= 0.

• If we uniformly sample (x, y, y′) from
{

(x, y, y′) : sxy 6= 0
}

,

sxy ·

− log2 ξxy +
ξxy−1
log 2

|Y| − 1
+ ξxy · σ

(〈
Ux, Vy

〉
−
〈
Ux, Vy′

〉) ,
is an unbiased estimator, which allows us to take guaranteed stochastic gradient.

Parallelization
•User parameters and item parameters are partitioned into multiple machines

•User parameters always stay, item parameters are exchanged after each epoch

•Within each epoch, SGD updates are taken within accessible region (Stratified SGD of [4])

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

⇒ x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

⇒ x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

⇒ x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x
x

x

x

x

x

x

x
x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

0 0.5 1 1.5 2 2.5 3

·106

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

number of machines × seconds elapsed

M
ea

n
P

re
ci

si
on

@
1

RoBiRank 4
RoBiRank 16
RoBiRank 32

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

5 · 10−2

0.1

0.15

0.2

0.25

0.3

seconds elapsed

M
ea

n
P

re
ci

si
on

@
1

Weston et al. (2012)
RoBiRank 1
RoBiRank 4
RoBiRank 16
RoBiRank 32

References

[1] N. Ding. Statistical Machine Learning in T-Exponential Family of Distributions. (Ph.D Thesis)
[2] D. Buffoni, P. Gallinari, N. Usunier, and C. Calauzenes. Learning scoring functions with order-preserving
losses and standardized supervision completion. (ICML 2011)
[3] J. Weston, C. Wang, R. Weiss, and A. Berenzweig. Latent collaborative retrieval. (ICML 2012)
[4] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with distributed
stochas- tic gradient descent. (KDD 2011)

